If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-33x-9=0
a = 3; b = -33; c = -9;
Δ = b2-4ac
Δ = -332-4·3·(-9)
Δ = 1197
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1197}=\sqrt{9*133}=\sqrt{9}*\sqrt{133}=3\sqrt{133}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-3\sqrt{133}}{2*3}=\frac{33-3\sqrt{133}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+3\sqrt{133}}{2*3}=\frac{33+3\sqrt{133}}{6} $
| -72-2x+6x=40 | | 2x+3=1-x-7 | | 7x+3*(2-x)=7-(1+2x) | | 3(x+2)+5(x+2)=72 | | 4x-132+2x=72 | | 4=2x^2-7x | | 8u+3=6u+13 | | (X^2-25)(x^2-64)=0 | | -8-3c=-c | | -4y+4=2(4y+8) | | 2x-70=3x+10 | | -225-15x+5x=75 | | -5p+15=-4 | | 3x-5/3=4x+3/5 | | -65+8x+x=142 | | 50=w(2w) | | -11x-112-x=176 | | 6+7d=55 | | 15d=6 | | 2(3x+6)-5=3(5x-8)+7 | | 10x-7x-68=37 | | 10y+8=9y | | X/7+y/3=1 | | s-20=-20 | | -29-11x+8x=46 | | 8-2x=-(2x+6) | | 2x+55=13-5x | | 13x+17x=90 | | X-3/2=5/1-x/3 | | 6x+2(1+x)=3x–8+x–2 | | Y=500=25x+150 | | 9x-11x-20=42 |